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A simple model is developed, based on an approximation of the Boussinesq equation,
that considers the weakly nonlinear evolution of an initial interface disturbance in a
closed basin. The solution consists of the sum of the solutions of two independent
Korteweg–de Vries (KdV) equations (one along each characteristic) and a second-
order wave–wave interaction term. It is demonstrated that the solutions of the two
independent KdV equations over the basin length [0, L] can be obtained by the
integration of a single KdV equation over the extended reflected domain [0, 2L]. The
main effect of the second-order correction is to introduce a phase shift to the sum of
the KdV solutions where they overlap. The results of model simulations are shown to
compare qualitatively well with laboratory experiments. It is shown that, provided the
damping timescale is slower than the steepening timescale, any initial displacement
of the interface in a closed basin will generate three types of internal waves: a packet
of solitary waves, a dispersive long wave and a train of dispersive oscillatory waves.

1. Introduction
It is well established (e.g. Mortimer 1952) that wind blowing over a lake results in a

tilt of the free surface, upward at the leeward shore, and a corresponding downward
tilt of the thermocline within the fluid. When the wind stress is removed, the free
surface and the thermocline relax, generating basin-scale long waves at each interface:
the surface and internal seiches. Understanding the dynamics of the internal seiche is
important as it is a source of kinetic energy for driving transport and mixing in lakes
(Imberger 1998).

Historically, analysis of the internal seiche has been based on linear theory (e.g.
Mortimer 1952; Heaps & Ramsbottom 1966; Spigel & Imberger 1980), usually
assuming a simple two-layer density structure. However, field observations have shown
that the amplitude of the internal seiche is often large enough to allow nonlinear
effects to become significant (e.g. Thorpe, Hall & Crofts 1972; Hunkins & Fliegel
1973; Farmer 1978; Wiegand & Carmack 1986).

Numerical modelling has demonstrated the importance of nonlinear effects in the
generation of small-scale features observed in the internal wave field in lakes (Hutter
et al. 1998). Furthermore, it has been shown that nonlinear steepening is expected to
be an important mechanism in the degeneration of basin-scale internal waves in most
lakes (Horn, Imberger & Ivey 2001).
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The nonlinear steepening of an initial seiche leads to the generation of an in-
ternal surge, or packet of solitons, so that energy is transferred within the internal
wave spectrum from the basin-scale to much shorter lengthscales. Horn et al. (2001)
conducted a series of laboratory experiments with vertical endwalls but postulated
that this transfer of energy from the seiche to solitons has important implications
for boundary mixing in lakes because solitons are likely to shoal at sloping bound-
aries. To investigate the degeneration of large-scale internal waves in closed basins,
such as in either the laboratory experiments of Horn et al. (2001) or in a lake,
we develop here a simple model to simulate the nonlinear steepening of an initial
basin-scale internal wave and the subsequent evolution and propagation of soli-
tons.

The simplest model to include weak nonlinearity is the Korteweg–de Vries (KdV)
equation (for a general review of the KdV equation see Miles 1981). The KdV equation
describes the evolution of waves that are long compared with both their amplitude
and the total depth of the fluid and assumes that nonlinear effects enter the equations
at the same order as dispersive effects. In a simple inviscid two-layer system consisting
of a fluid with density ρ1 and depth h1 overlying a fluid of density ρ2 and depth h2,
and making the Boussinesq approximation, the KdV equation can be written as

ηt + c0ηx + αηηx + βηxxx = 0, (1.1)

where η(x, t) is the interface displacement, c0 = (g′h1h2/H)1/2 is the linear long-wave
speed, g′ = (∆ρ/ρ0)g, α = 3

2
c0(h1 − h2)/h1h2 and β = 1

6
c0h1h2. Several modified KdV-

type equations have also been derived that extend the range over which this type
of equation can be applied as well as allowing for the inclusion of slow variations
in depth, stratification and background shear (e.g. Djordjevic & Redekopp 1978;
Maslowe & Redekopp 1980; Helfrich, Melville & Miles 1984). The equation and
its modified forms have been applied to observations in lakes and coastal seas (e.g.
Hunkins & Fliegel 1973; Lee & Beardsley 1974; Sandstrom & Elliott 1984) and shown
to agree well with experimental data (e.g. Koop & Butler 1981; Segur & Hammack
1982).

The KdV equation is unidirectional, however, and considers the slow time evolution
of a long wave as it propagates along only one characteristic. In many instances this
does not matter, but it does neglect the possibility of the interaction of waves
travelling in opposite directions as can occur in closed basins for example. In a simple
two-dimensional domain such as a laboratory tank or long narrow lake, an arbitrary
initial disturbance will evolve into waves propagating in opposite directions, but only
the evolution and interaction of long waves moving in one direction can be described
by a single KdV equation. As these waves are reflected from the boundaries of a
confined basin, they will necessarily pass through one another in opposite directions,
an interaction that cannot be described by the KdV equation.

The aim of this paper is to introduce a simple computational model that describes
the weakly nonlinear evolution of an initial disturbance and its subsequent reflection
from the boundaries of a closed basin such as a laboratory tank or idealized lake.
We begin by describing an approach which employs a virtual reflected domain that
advantageously allows the approximate computation of the wave field composed of
information propagating along both characteristics via the integration of a single
KdV equation with a second-order correction. Dissipative effects arising from wave-
induced boundary layers are introduced into the model and the results of model
simulations and laboratory experiments are compared. We then briefly examine the
internal waves that are generated by a tilted interface in a closed basin, describing
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the wave field in terms of known solutions to the KdV equation. The generation of
relatively short waves is shown to have important implications for boundary mixing
in lakes.

2. Proposed weakly nonlinear model
2.1. Method of solution by reflection

We are interested in the evolution of the internal wave field arising from an initial
disturbance of the interface in a two-layer system in a closed basin of uniform depth.
The starting point for our analysis is the Boussinesq equation (Redekopp 2000; New
& Pingree 2000) written in unscaled coordinates:

Ntt − c2
0Nxx = 1

3
c2

0h1h2Nxxxx +
h1 − h2

h1h2

(2NtNxt + c2
0NxNxx), (2.1)

where the interfacial displacement is given by η(x, t) =Nx. This equation is derived
from the Euler equations by employing a similar asymptotic expansion to that used in
obtaining the KdV equation (1.1) (i.e. weak nonlinearity balanced by weak dispersive
effects) except for one very important difference: any bias toward propagation along
a given characteristic has been specifically avoided in (2.1).

The d’Alembert solution of the linear wave equation appearing on the left-hand
side of (2.1) for an initial displacement of the interface η0(x) is composed of identical
waves of amplitude η0/2, one moving to the right along the characteristic dx/dt = c0

and the other moving to the left along dx/dt = −c0. In a closed basin of length L,
the waves will reflect from the endwalls where their directions will be reversed (see
figure 1). We will assume here that the endwalls are vertical and perfectly reflecting,
a good approximation of the laboratory tank.

Our goal in this section is to develop an approximate and practically useful solution
procedure for the bi-directional evolution in [0, L] defined by (2.1). We introduce the
slow independent variables (X,T ) = µ(x, t), where µ = h/λ is the long-wave parameter.
Similarly, we introduce an amplitude parameter ε = a/h and use the KdV scaling
ε = µ2 so that the effects of dispersion and nonlinearity balance. We now consider an
asymptotic representation of the solution of (2.1) having the form

N(x, t) =
ε

µ
{N(1)(X,T ) + εN(2)(X,T ) + ε2N(3)(X,T ) + · · ·}, (2.2)

for the initial value problem with η(x, 0) = η0(x).
As anticipated, the leading-order balance equation resulting from the expansion

(2.2) is simply the linear wave equation

N(1)
TT − c2

0N(1)
XX = 0, (2.3)

which possesses the fundamental (d’Alembert) solution

N(1)(X,T ) = F(r, τ) + G(s, τ). (2.4)

The independent variables r and s are characteristic coordinates

r = X − c0T , s = X + c0T , (2.5)

and τ = εT is a slow timescale required to enforce consistency in the asymptotic
expansion (2.2).
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Figure 1. Schematic representation of the reflected domain. (a) Any initial condition will evolve
into leftward and rightward propagating waves that will change direction on reflection from the
vertical boundaries at x = 0, L. (b) This system can be represented in a uni-directional domain with
periodic boundary conditions at x = 0, 2L in which rightward propagating waves are represented
in [0, L] and leftward propagating waves in [L, 2L]. Whereas a rightward propagating wave in
the bi-directional domain is reflected from the end of the tank at x = L and becomes a leftward
propagating wave, in the new domain the wave continues from [0, L] into [L, 2L] (which represents
leftward propagating waves). Similarly, due to the periodic boundary conditions, on reaching x = 2L
the wave reappears at x = 0, changing from leftward to rightward propagating in exactly the same
way as a wave reflected from the left boundary (x = 0) in the bi-directional domain.

The next order balance yields the inhomogeneous equation

2c0

∂2N(2)

∂r∂s
= − ∂

∂r

{
Fτ + 3

4
c0

h1 − h2

h1h2

F2
r + 1

6
c0h1h2Frrr

}
+
∂

∂s

{
Gτ − 3

4
c0

h1 − h2

h1h2

G2
s + 1

6
c0h1h2Gsss

}
+
c0

2

h1 − h2

h1h2

(FrGss + FrrGs). (2.6)

Clearly, the first two bracketed terms on the right-hand side must vanish separately in
order to avoid the appearance of secular behaviour in the solution for N(2). Hence,
we find that F(r, τ) and G(s, τ), the independent d’Alembert solutions, satisfy separate,
uncoupled KdV equations. Recalling that the dimensional interface displacement is
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η =Nx, one arrives at the relations

η(x, t) = εη(1)(X,T , τ) + ε2η(2)(X,T , τ) + · · · , (2.7)

η(1) =
∂N(1)

∂X
= Fr + Gs = f(r, τ) + g(s, τ), (2.8)

fτ + 3
2
c0

h1 − h2

h1h2

ffr + 1
6
c0h1h2frrr = 0, (2.9)

gτ − 3
2
c0

h1 − h2

h1h2

ggs − 1
6
c0h1h2gsss = 0. (2.10)

Equation (2.9) is simply a restatement of the KdV equation given in (1.1), while (2.10)
reduces to a similar equation where the sign of the linear phase speed is reversed.
Thus, the leading-order wave field requires the solution of two independent KdV
equations on the interval [0, L], where the initial condition for each KdV equation is
given by η0/2. To leading order, the displacement field can, therefore, be obtained by
solving both equations on the periodic interval [0, L] and subsequently summing the
separate solutions at every instant in time. However, consideration of the boundary
conditions ui(0, t) = ui(L, t) = 0, together with the expressions for the leading-order
velocity field

u1(x, t) =
1

h1

Nt, u2(x, t) = − 1

h2

Nt, (2.11)

shows that the complete solution must satisfyN(0, t) =N(L, t) = 0. This immediately
suggests the use of an even half-range expansion of the displacement field: that is,
we consider the solution of the two KdV equations in the extended domain [0, 2L]
with symmetry about the position x = L. Now, it is readily apparent that the solution
g(s, τ) in [0, L] is equivalent to the solution f(r, τ) in [L, 2L] folded about the line
x = L. Furthermore, since the initial condition (the displacement η0) is split equally
between f(r, 0) and g(s, 0) , we can realize the solution η(1) = f(r, τ)+g(s, τ) by solving
only the single KdV equation for the field f(r, τ) in the interval [0, 2L] using periodic
boundary conditions and with initial condition η0/2 as shown in figure 1. The desired
field in the physical domain [0, L] is obtained subsequently by folding the solution
field for f(r, τ) in [L, 2L] about x = L (i.e. using g(x, t) = f(2L − x, t)) to obtain the
desired bi-directional evolution.

The second-order contribution N(2), which contains the leading estimate of the
interaction between waves propagating in opposite directions, can be calculated from
the remaining (non-secular) term on the right-hand side of (2.6). Evaluating the
particular solution for η(2) in terms of the separate d’Alembert functions yields

η(2)
p =

∂Np

∂X
=
∂N(2)

p

∂r
+
∂N(2)

p

∂s
=

1

4

h1 − h2

h1h2

{2fg + frG+ gsF}. (2.12)

Now, using the fact that g(x, t) = f(2L − x, t) in 0 6 x 6 L, and the definitions in
(2.8), the interaction contribution can be re-written as

η(2)
p =

1

4

h1 − h2

h1h2

{
2f(x, t)f(2L− x, t) +

∂f(x, t)

∂x

∫ 2L−x

2L

f(2L− x′, t) dx′

+
∂f(2L− x, t)

∂x

∫ x

x=0

f(x′, t) dx′
}
, 0 6 x 6 L. (2.13)

This interaction correction applies at any instant in time and can be computed
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after integration of the single KdV equation for the function f(r, τ) in [0, 2L] has
been accomplished. There is a further component in the complete solution for η(2)

involving nonlinear interactions between η(1) and η(2)
p , but we choose to neglect that

contribution. Our goal is to propose a rapid calculation tool for weakly nonlinear
evolution in closed basins, and this additional component would require integration
of further PDEs involving the non-local term η(2)

p .
An approximate solution for the long-wave evolution in a closed basin of length L

can, therefore, be obtained by the integration of a single KdV equation on the extended
interval [0, 2L]. The leading-order solution is obtained by folding the computed KdV
field about the symmetry line x = L. The second-order correction can be added by
including the sum of the factors given in (2.13), which involves the computation
of the two quadratures. An implicit advantage of the (natural) even extension of
the solution domain is that both the initial condition and any bottom topography
will be continuous functions. Hence, any artificial introduction of high-wavenumber
behaviour in the spatial representation of the wave field will be ameliorated. Of
course, discontinuities of spatial derivatives of the initial condition and/or the bottom
topography may still enter, but this is of comparatively minor significance in any
numerical simulation of the KdV equation.

2.2. Numerical method

The physical bi-directional domain [0, L] is first extended to form the uni-directional
domain [0, 2L] and discretized into equal intervals with periodic boundary conditions
at x = 0, 2L. The initial interface displacement η0(x) in the physical bi-directional
domain [0, L] is then divided and apportioned equally to form the initial conditions
f(x, 0) and g(x, 0). Recalling that g(x, t) = f(2L− x, t), we have

f(x, 0) = f(2L− x, 0) = 1
2
η0(x), 0 6 x 6 L. (2.14)

To solve the KdV equation, from which the leading-order wave field is obtained,
we use a pseudo-spectral method (Canuto et al. 1988).

Since we later make direct comparisons of the evolution predicted by the model
(2.8) with laboratory experiments, it is important to include in the model dissipative
effects arising from laminar boundary layers along the surface of the tank. To this
end we employ an extended KdV equation (cf. Keulegan 1948; Miles 1976) applicable
to an infinitely wide tank with rigid upper and lower surfaces, the form of which is
well suited to the psuedo-spectral method employed here:

ft + αffx + βfxxx =
1

2

√
νc0

2

h1 + h2

h1h2

1

2π

∫ ∞
−∞
|k|1/2(−1 + isgn k)f̂(k, t) eikx dk

=
1

2

√
νc0

2

h1 + h2

h1h2

F−1{|k|1/2(−1 + isgn k)f̂(k, t)}, (2.15)

where ν is the kinematic viscosity.
The second-order correction (2.13) is computed at whatever time is of interest. Since

the correction is evaluated after the integration of the KdV equation is completed, it
in no way influences the spectral accuracy of the numerical integration of the KdV
equation. The spatial derivatives required by the correction are calculated using the
same spectral method and the integrals are calculated using the trapezoidal rule. A
time series of the value of this second-order correction at a point can be generated by
evaluating the integral at each timestep, such as for figure 7, but this is not necessary.

The model has been developed to describe the nonlinear evolution of basin-
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Figure 2. (a) Schematic diagram of the experimental set-up. The ultrasonic wavegauges were
located at the positions marked A, B and C. (b, c) The tank and the density structure immediately
before and after an experiment commences: (b) initially tilted tank, (c) initial condition with the
tank horizontal and interface inclined.

scale waves in a laboratory experiment. We therefore keep the variables in their
original physical dimensions. For modelling the laboratory experiments in a 6 m
tilting tube, the reflected domain was 12 m long and was discretized into 512 intervals
of ∆x = 0.023 m and the timestep was ∆t = 0.001 s, although substantially coarser
grid spacings and timesteps are possible for weakly nonlinear simulations.

3. Comparison with laboratory results
3.1. Laboratory experiments

The laboratory experiments described below were part of a wider study of the
degeneration of large-scale interfacial waves in lakes by Horn et al. (2001) and the
interested reader is referred to that work for more detail. The laboratory experiments
were conducted in a clear acrylic tank 600 cm long, 29 cm deep and 30 cm wide. The
tank could rotate about a horizontal axis approximately through its centre so that
the interface could be initially tilted. The experimental set-up is shown in figure 2.
The tank was filled with a two-layer stratification (0.2 < h2/H < 0.3), the upper layer
being fresh and the lower layer saline (∆ρ ≈ 20 kg m−3) and the interface thickness
was less than 1 cm. Before starting the experiment the tank was slowly rotated through
a small angle (θ = 0.25◦–1.5◦) to its initial position.

The experiment began at t = 0 when the tank was suddenly returned to a horizontal
position so that the interface was then inclined at the original angle of tilt, as shown
in figure 2. The resulting flow was recorded on video and the interface displacement
measured by ultra-sonic wavegauges (Michallet & Barthélemy 1997). For experiment
A, the depth of the lower layer was 5.8 cm (h/H = 0.2) and the initial angle of tilt
was 0.5◦. To allow a range of initial amplitudes to be considered, we also present
the results from a series of experiments (B1–4) in which the lower layer was 8.5 cm
(h/H = 0.3) and the angle of tilt was increased from 0.25◦ to 1.0◦. Since this second
series of experiments was conducted without re-filling the tank, the interface gradually
thickened during the series from approximately 1 cm to 2 cm.

When the experiment began at t = 0 with the interface suddenly inclined, the
baroclinic pressure gradient drove a flow from right to left below the interface and
from left to right above it. In experiment A the interface was observed to initially
oscillate about its horizontal position, as predicted by linear theory (e.g. Spigel &
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Figure 3. Comparison of simulated and observed interface displacements. Time series of interfacial
displacements at horizontal positions corresponding to wavegauges B (x = 3.0 m) and C (x = 4.5 m).
For this experiment (A) h = 5.8 cm, H = 29 cm, θ = 0.5◦ and ∆ρ = 20 kg m−3.

Imberger 1980). However, at about t = 90 s the basin-scale standing wave developed
an asymmetry and its front face gradually steepened. By t = 150 s a train of solitons
was seen to emerge. We will refer to these waves initially as solitons, but will show
in § 4.2 that they include dispersive oscillatory waves as well as KdV solitons. These
waves were reflected from the endwalls and continued to propagate back and forth
through the tank. After each reflection the waves passed through one another but
appeared unaffected by the interaction. They were gradually damped, but were still
visible on the wavegauge outputs after 1000 s when the instrument and video records
were terminated. The evolving wave field can be seen by examining the time series of
interface displacements recorded by the ultrasonic wavegauges as shown in figure 3.
Wavegauge B was located near the centre of the tank (x ≈ 3.0 m) and wavegauge C
at the 3/4 position (x ≈ 4.5 m).

The wavegauge outputs for experiments B1–B4, with increasing angle of tilt, are
shown in figure 4. In experiment B1 the amplitude of the initial basin-scale wave
was very small and the interface oscillated as a standing wave (without evolving into
solitons) until the motion was eventually damped by viscous effects. However, when
the amplitude of the initial wave was increased (by increasing the angle of tilt), the
initial basin-scale wave was observed to steepen more rapidly and the number and
amplitude of solitons increased.

3.2. Numerical simulations

The model described in § 2.2 was used to simulate laboratory experiment A. Following
the method described in § 2.1, half the initial interface displacement over the 6 m length
of the tank was reflected about x = 6 m onto the extended discretized 12 m domain,
as shown in figure 5. The model was then run for 600 s of real time and the physical
interfacial displacements recovered by folding the 12 m computational domain about
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Figure 4. Comparison of simulated and observed interface displacements. Time series of interface
displacements at wavegauge B predicted by the model (—) and from the laboratory experiments
B1–B4 (- · -). For these experiments h = 8.5 cm, H = 29 cm, 0.25◦ < θ < 1.0◦ and ∆ρ = 20 kg m−3.
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Figure 5. Schematic diagram of initial condition for the model. The displacement due to the tilted
interface is partitioned equally into leftward and rightward propagating parts by taking half the
laboratory initial condition and reflecting it about x = L in the extended reflected domain.

x = 6 m. The first-order KdV solution and the second-order interaction term were
calculated separately and then summed.

The solution from the model, consisting of the sum of the first-order KdV solution
and the second-order interaction term, is shown in figure 6, in which the simulated
interface position is plotted at intervals of Ti/4, where Ti is the period of the basin-
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Figure 6. Results of a model simulation: interface displacements plotted at intervals of Ti/4. For
this experiment (A) h = 5.8 cm, H = 29 cm, θ = 0.5◦ and ∆ρ = 20 kg m−3.

scale linear internal wave. The model reproduces the steepening of the basin-scale
wave and the evolution of solitons, closely matching the video record of the laboratory
experiment.

Figure 3 shows that the interface displacements simulated by the model are close
to those recorded by the ultrasonic wavegauges. The model slightly over-predicts
the amplitude of the emerging solitons, but captures the timing and phase of their
evolution very well. After 300 s the phase error of the leading three solitons measured
at wavegauge 2 was less than 1 s (10 cm) although the amplitude error was more
significant (0.2 cm = 13%). The phase errors of the smaller solitons were greater, with
the laboratory wave packet appearing more compact. Although figure 3 only shows
the first 300 s of data, after 600 s the model was still closely reproducing the laboratory
signal. At 600 s, the phase error of the leading soliton measured at wavegauge B was
2 s (19 cm) and the amplitude error was 0.05 cm (15%).

In making any detailed comparison between the model simulation and the experi-
mental results we should note that the model includes several simplifying assumptions
and that the experimental data contain some uncertainties, all of which contribute
to the observed differences. For example, some of the phase errors could easily be
attributed to the continuous stratification in the experiments which is being modelled
by a two-layer system (Helfrich & Melville 1986). Furthermore, to model the actual
continuous stratification of the experiments as a two-layer system, an equivalent
interface depth is calculated. Apart from the fact that the linear long-wave speed
on a finite thickness interface is less than that of the true two-layer case, the wave
speed is also quite sensitive to the interface depth. An error in the assumed interface
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depth (based on the measured continuous density profile) of ±5% of the depth of the
lower layer (±0.3 cm over 5.8 cm) would lead to a phase difference of ±6 s over 300 s.
Other possible sources of small errors are the measurements of initial angle of tilt
and the density difference. The model also neglects viscous losses at the endwalls and
sidewalls of the tank and at the interface, an omission that might contribute to the
over-prediction of the wave amplitudes. These additional terms could each be added
to the dissipative term if the model was to be used for a quantitative analysis of the
laboratory experiments.

To further test its performance, the model was used to simulate a sequence of
laboratory experiments with increasing nonlinearity. Figure 4 compares the predicted
and recorded interface displacements. Considering that the simulations are based on a
two-layer weakly nonlinear approximation, the model reproduces well the laboratory
data over the considerable range of dynamic behaviours shown in figure 4, although
it does generally over-predict the amplitude of the emerging solitons. We suggest that
an explanation for these errors in amplitude is a combination of the simple boundary
dissipation model used and the assumption of weak nonlinearity. The comparisons
in figure 4 show that the model does less well in simulating experiments with strong
nonlinearity, that is for experiments with larger angles of tilt. The Boussinesq and KdV
equations require that the nonlinearity is weak (ε� 1) and Koop & Butler (1981)
showed that the KdV equation was valid for amplitudes as large as ε ≈ 0.2. Including
higher-order terms or cubic nonlinearity would be expected to improve the quantitative
agreement with the laboratory experiments. However, our purpose in this paper is to
propose a tool for use in understanding the qualitative evolution of the internal wave
field in lakes.

4. Discussion
4.1. Wave–wave interactions

A feature of the laboratory experiments presented in § 3.1, and of the internal wave
field in many closed basins, is wave–wave interactions. In two-dimensional closed
basins, these interactions fall into two categories: one in which both waves are
propagating in the same direction, and the other in which the waves are propa-
gating in opposite directions. In the case of the degeneration of basin-scale waves
in closed basins, the evolution of the internal wave field necessarily involves the
continual interaction of waves propagating in both directions. The reflection of a
wave from a vertical endwall is approximately equivalent to its interaction with
an identical wave travelling in the opposite direction and so falls into the second
category.

The first class of interaction, in which waves overtake one another while travelling
in the same direction, has been described as the strong interaction (e.g. Miles 1977;
Weidman & Maxworthy 1978). In this case both waves possess the same linear phase
speed and the interaction occurs on a long timescale determined by the differences
in wave amplitudes (i.e. differences in the nonlinear corrections to the phase speed).
This type of interaction is implicitly included in the two KdV equations (2.9) and
(2.10) and has been studied analytically (e.g. Lax 1968), numerically (e.g. Fornberg
& Whitham 1978) and in the laboratory (e.g. Weidman & Maxworthy 1978). An
important property of KdV solitary waves is that following such a strong interaction
they preserve their form. Although each wave experiences a phase shift (the larger,
faster wave has a forward phase shift and the slower, smaller wave has a backward



280 D. A. Horn, J. Imberger, G. N. Ivey and L. G. Redekopp

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

η
 (

cm
)

180 190 200 210
Time (s)

220 230 240

KdV solution
2nd-order correction
Corrected KdV
Lab. data

Figure 7. Effect of the second-order correction term. Comparisons of the solutions given by
the independent KdV equations (2.8), the solution with the second-order correction (2.13), and
the experimental data. The plots are for time series of interfacial displacements at wavegauge B
(x = 3.0 m). The experimental parameters were the same as for figure 6.

shift), in an inviscid system they maintain their shape and amplitude and there is no
loss of energy.

The second type of interaction, between waves travelling in opposite directions,
occurs on a relatively fast (actually, a much faster) timescale associated with the
linear phase speed and the respective wavelengths and has been described as the weak
interaction. The effects of the interaction are of higher order than the KdV equation
and a first approximation to the solution can be obtained by linearly superposing
the KdV solutions along each characteristic (Miles 1977). This approximation is
equivalent to the leading-order solution described by (2.8) and is plotted in figure 7
as the KdV solution. The second-order solution described in § 2.1 includes the wave–
wave interactions as an asymptotically smaller term given by (2.13). This is clearly
an approximation to the Boussinesq equation (2.1), which makes no approximation
regarding the wave–wave interaction of either class beyond the weakly nonlinear
assumption underlying the derivation of the equation from first principles.

Figure 7 plots the magnitude of the first-order approximation (2.8), the second-order
correction (2.13), and the subsequently corrected approximation given by the sum of
these two terms, together with the laboratory data. The first-order approximation,
formed by sum of the independent KdV equations, provides a good approximation
of the laboratory observations, although there is a phase error over the length of the
wave packet. The two leading KdV waves are ahead of the corresponding laboratory
waves, but the subsequent KdV waves lag behind the laboratory waves, so that
the KdV wave packet is more dispersed than the observed laboratory wave packet.
The main effect of the second-order correction is to introduce a phase shift to each
wave, backwards in the case of the two leading waves and forwards for the trailing
waves, improving the match between the phase of the waves in the model and the
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laboratory data. The inclusion of the second-order correction does, however, increase
the amplitude error of the leading soliton.

The most obvious wave–wave interactions observed in the laboratory experiments
occur during the reflection of the wave packet from the endwall of the tank when the
wave packet passes through itself so that each wave interacts with each of the other
waves in the same packet while travelling in the opposite direction. The interaction
of two solitary waves propagating in opposite directions has been investigated in
analytical studies (Byatt-Smith 1971; Gear & Grimshaw 1984), laboratory experiments
(Maxworthy 1976; Renouard, Seabra-Santos & Temperville 1985) and numerical
simulations (Mirie & Su 1982; Fenton & Rienecker 1982; Cooker, Weidman & Bale
1997). These studies show that the collision of two solitary waves results in a maximum
amplitude exceeding the sum of the interacting waves and that each wave emerges
with a negative phase shift. None of these studies, however, predict the positive phase
shift observed in our laboratory experiments and the numerical simulations.

The studies cited above focused only on the interaction of solitons and the bottom
panel of figure 3 shows that the packet of solitons is interacting with some large-scale
wave that moves the entire interface up and down. The source and role of this large-
scale wave is examined in the following section but we note here that its interaction
with the soliton packet appears to be approximated by the proposed model (since the
positive phase shift observed in the laboratory data is reproduced in the model).

4.2. Decomposition of the internal wave field

That the KdV equation captures so much of the dynamics of the degeneration of the
basin-scale initial condition confirms that nonlinear steepening and dispersive effects
dominate this process. We now investigate the composition of the evolving internal
wave field in terms of the known behaviour of some simple solutions to the KdV
equation. It is, of course, true that the wave field described by the KdV model applied
here to the extended-folded closed domain is properly given by consideration of the
periodic inverse scattering transform (e.g. Osborne et al. 1998). However, we find that
it is useful for conceptual purposes to think of the wave field as being composed
of two separate parts emanating from the two different displacement volumes that
co-exist, but are spatially separated, during any realistic distortion of the interface in
a closed basin.

If we initially consider the initial condition η0(x) for waves travelling along only
one of the characteristics and described by (1.1) when the nonlinear coefficient α is
positive, it can be shown (e.g. Drazin & Johnson 1989) that for solutions on the
infinite line:

(a) When the net volume of the initial condition is positive (
∫
η0 dx > 0), it evolves

into at least one soliton and a tail of dispersive oscillatory waves. The number
of solitons can be determined from the initial condition by employing the inverse
scattering transform.

(b) When η0(x) 6 0 for all x, no solitons emerge and the solution consists of a
negative leading wave, referred to as a rarefaction, and a dispersive train of oscillatory
waves.

The tilted interface that formed the initial condition for the laboratory experiments
consisted of both positive (η0(x) > 0) and negative (η0(x) < 0) displacement of the
interface with a net volume

∫
η0 dx = 0 by conservation of volume in a closed

basin. For the KdV model simulations figure 8 shows the separate evolution of the
positive and negative volumes that make up the tilted interface, and figure 3 shows
the evolution of the complete initial condition. It is the superposition and nonlinear
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Figure 8. Evolution of positive and negative initial volumes. An initial condition of the form of a
tilted interface can be decomposed into a positive and a negative initial displacement. The positive
initial condition will evolve into at least one soliton. For the case of a thin lower layer the solitons are
waves of elevation. The negative initial condition evolves into a negative dispersive wave, referred
to as a rarefaction, and a train of dispersive oscillatory waves. The dispersive oscillatory waves are
initially similar in appearance to the solitons. The wave field that evolves from the case of the tilted
interface is a result of the nonlinear interaction of all of these waves.

interaction of these different waves (emerging from the positive and negative volumes)
that produces the observed interface displacements. For the usual case of a semi-
infinite domain, it can be shown (e.g. Hammack & Segur 1974; Horn et al. 2000) that
for such simple initial conditions, the number and amplitude of emerging solitons
is determined by the positive volume only, and that the long-term behaviour of the
emerging solitons is independent of the presence of the negative volume. Similarly, the
negative volume evolves into a leading rarefaction and a dispersive train of oscillatory
waves that, in the long term, are relatively unaffected by the presence of the positive
volume. If the positive volume is initially to the left of the negative volume (for the
case of the rightward characteristic), the evolving solitons, having a greater phase
speed, first pass through the oscillatory waves and the trough of the negative wave.
The interaction between the solitons and dispersive waves affects the short-term
evolution of the wave field by changing the depth of the interface on which the waves
propagate and by introducing phase shifts to the solitons. However, in the long term
the waves separate in space into a packet of solitons and a packet of dispersive
waves (consisting of the leading negative wave and the oscillatory tail). The situation
in a closed basin such as the laboratory tank appears more complicated because
these different components are unable to separate in space. The waves continue to
pass through one another as they are reflected from the endwalls and these repeated
interactions are thought to be the cause of the positive phase shifts observed in the
laboratory experiments. Nonetheless, an initial condition such as the tilted interface
considered here will evolve into an internal wave field that can be described in terms
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of three components, each of which behaves differently. The KdV equation has been
shown to closely predict the evolution of all these waves in the case of surface waves
Hammack & Segur (1978), except the possibility of high-wavenumber oscillatory
waves forming envelope solitons or becoming unstable. Since these effects occur on
relatively long timescales compared with the effects of interest here, this shortcoming
is considered acceptable.

The solitons emerge from the initial positive volume after a time Ts ∼ L/αη0

(Horn et al. 2001), at which time the leading wave has an amplitude a ∼ η0 and a
characteristic wavelength

λ =

(
12

a

β

α

)1/2

, (4.1)

where α and β are the coefficients of the KdV equation (1.1). These waves are much
shorter than the basin-scale initial condition from which they emerged. In a closed
basin with sloping ends, such as a lake, these solitons would shoal at the first boundary.
Although the shoaling of these waves is a function of the wave amplitude (and hence
slope) and the boundary slope, for typical lake slopes solitary waves might dissipate
upto 70% of their energy in a single reflection (Michallet & Ivey 1999; Helfrich 1992).

The negative wave behaves quite differently. The front slope of the wave decreases
with time, the wavelength increases as O(t1/3) and the amplitude decreases as O(t−1/3)
(Ablowitz & Segur 1977). This rarefaction initially has a wavelength that is compa-
rable with half the basin length and slowly grows in length. Unlike the much shorter
solitons, this wave would be reflected from typical lake boundaries, remaining in the
lake for a considerable time after the wind event that generated it.

The rarefaction is followed by a train of dispersive oscillatory waves. The amplitude
of the leading oscillatory waves is ∼ η0 and their wavelength is comparable with that
of the solitons given by (4.1). However, the amplitude and wavelength of the oscillatory
waves decreases towards the back of the train and their amplitude decays as O(t−1/3).
The leading waves in the packet have a phase speed approaching, but less than, the
linear long-wave speed and the phase speed of the following waves decreases towards
the back of the train, so the packet disperses with time. These oscillatory waves
emerge from the initial negative volume at approximately the same time as, and with
similar characteristics to, the solitons that emerge from the initial positive volume.
Furthermore, in simulations of the laboratory experiments the leading oscillatory
waves first appear in the same region in space and have a similar phase speed as the
solitons and appear to remain in phase with them, initially giving the appearance of
a larger packet of solitons. However, in time the oscillatory waves decay in amplitude
and become separated from the true solitons. Since they are also relatively short
waves compared with typical lake slopes (although still long waves), they will break
at the first sloping boundary they encounter.

An interesting question that arises from this description is whether, once the
solitons and oscillatory waves have shoaled at the boundaries, the residual wave
steepens again, starting the cycle once more. The only waves that will steepen to form
more solitons are positive waves (usually waves of depression in lakes). Since the
rarefaction is a negative wave it will never steepen to generate solitons. The shoaling
of solitons at sloping boundaries does not dissipate all of the incident wave energy
and Michallet & Ivey (1999) observed reflected small-amplitude long waves. These
long waves would steepen, although whether they degenerate into a packet of solitons
would depend on the competition between damping and steepening.

We suggest that in many lakes the conceptual model of a linear internal standing
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wave, or seiche, is inappropriate and should be replaced by a weakly nonlinear model
such as the one based on the KdV equation and presented here. The action of the
wind blowing over the surface of a lake is to generate a depression of the thermocline
at the leeward shore and an elevation of the thermocline at the windward shore.
In the absence of rotation, these displacements of the thermocline form the initial
positive and negative volumes from which evolve the three components described
above. Note that in most lakes the thermocline is above the mid-depth position so
that a depression of the thermocline represents a positive initial volume. Conservation
of volume requires that any depression of the thermocline must be accompanied by
an equal elevation of the thermocline, so all three components will always emerge
from any displacement of the thermocline (although not from the same location)
unless they are damped by boundary dissipation. In many cases, such as a tilted
thermocline, the potential energy of the initial condition is equally divided between
the positive and negative volumes, so that the long rarefaction should be as important
to the internal wave dynamics as the more commonly described internal solitons and
surge that evolve from the downwelled, positive volume. In many lakes, the recorded
isotherm displacements with periods close to that of the linear internal standing wave
could be due to a propagating rarefaction, rather than a linear standing wave. A
rarefaction would take the form of an asymmetric large-scale wave of elevation, but
unless the true background stratification is known, this could be misinterpreted as
a basin-scale oscillation. During the early stages of steepening the combination of
the propagating rarefaction in combination with the steepening wave of depression
would appear similar to a basin-scale standing wave. Equally important, the groups
of solitons and oscillatory waves could be misinterpreted from spectral analysis as a
spectrum of internal waves, rather than a set of groups of high-frequency waves.

5. Conclusions
We have developed a simple KdV-type model for describing the weakly nonlinear

evolution of long interfacial waves in a closed basin. The solution method is based on
an approximation of the Boussinesq equation and consists of the sum of the solutions
of two independent KdV equations and a second-order interaction term. The solution
of the two independent KdV equations is obtained by first taking half the initial
condition (on [0, L]) and reflecting it onto an extended uni-directional domain [0, 2L]
(with periodic boundary conditions), then integrating a single KdV equation on the
extended domain. The solution is then folded about x = L to obtain the bi-directional
wave field.

The model was validated against a series of laboratory experiments in which
an initial basin-scale wave steepened and evolved into packets of shorter waves
and some residual basin-scale waves. Despite some simplifying assumptions (weakly
nonlinear; two-layer stratification; no mixing; simple boundary loss model) the model
reproduced the observed interface displacements qualitatively very well. A comparison
of the leading-order KdV solution and the second-order correction (that includes
the approximate interaction term) shows that the main effect of the second-order
correction is to introduce a phase shift to each wave, improving the phase match
between the model and the laboratory data, although increasing the amplitude error
of the leading soliton.

We have shown that an initial tilted interface can be decomposed into a positive and
a negative volume (in terms of the KdV model), and that the evolving internal wave
field can then be qualitatively described in terms of the nonlinear interaction of waves
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that emerge from these positive and negative initial conditions. The resulting wave
field consists of three components: a train of solitons, a dispersive long wave referred
to as a rarefaction and a train of dispersive oscillatory waves. Any displacement of
the interface in a closed basin can similarly be decomposed into positive and negative
initial conditions for the KdV equation and the resulting wave field will always consist
of these three components (provided that the damping timescale is slower than the
steepening timescale).

The generation of solitons and dispersive oscillatory waves from any initial condi-
tion has important implications for the energy cascade in lakes. These relatively short
waves shoal and break at the shallow-sloping boundaries in lakes, dissipating much
of their energy and contributing to the turbulence in the benthic boundary layer
and reflecting some energy as smaller-amplitude long waves. Conversely, the long
rarefaction is reflected from the sloping boundaries and continues to propagate back
and forth across the lake, gradually growing in length and decaying in amplitude. We
suggest that the basin-scale waves observed in many lakes are not true linear standing
waves, but a combination of propagating rarefactions (taking the form of a waves of
elevation) and long waves of depression.

The model described here is based on the standard KdV equation for a two-layer
stratification, modified only to account for laminar boundary layer losses. We are
currently adapting the model to include effects such as variable topography, wind
forcing and the breaking of waves at sloping boundaries.

The authors are grateful to Kraig Winters for his assistance in implementing the
numerical method. This research was supported by the Centre for Environmental
Fluid Dynamics and the Australian Research Council and was completed while
D. A. H. was a recipient of an Australian Postgraduate Award and a Samaha Research
Scholarship. This paper is Centre for Water Research reference ED 1436DH. L. G. R.
acknowledges the assistance of the Gledden Trust in providing support via a Gledden
Senior Visiting Fellowship at The University of Western Australia, and other partial
support provided by the Office of Naval Research under Grant N00014-95-0041.

REFERENCES

Ablowitz, M. J. & Segur, H. 1977 Asymptotic solutions of the Korteweg–de Vries equation. Stud.
Appl. Maths 57, 13–44.

Byatt-Smith, J. G. B. 1971 An integral equation for unsteady surface waves and a comment on the
Boussinesq equation. J. Fluid Mech. 49, 625–633.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid
Dynamics. Springer.

Cooker, M. J., Weidman, P. D. & Bale, D. S. 1997 Reflection of a high-amplitude solitary wave at
a vertical wall. J. Fluid Mech. 342, 141–158.

Djordjevic, V. D. & Redekopp, L. G. 1978 The fission and disintegration of internal solitary waves
moving over two-dimensional topography. J. Phys. Oceanogr. 8, 1016–1024.

Drazin, P. G. & Johnson, R. S. 1989 Solitons: An Introduction. Cambridge University Press.

Farmer, D. M. 1978 Observations of long nonlinear internal waves in a lake. J. Phys. Oceanogr. 8,
63–73.

Fenton, J. D. & Rienecker, M. M. 1982 A Fourier method for solving nonlinear water-wave
problems: application to solitary-wave interactions. J. Fluid Mech. 118, 411–443.

Fornberg, B. & Whitham, G. B. 1978 A numerical and theoretical study of certain nonlinear wave
phenomena. Phil. Trans. R. Soc. Lond. A 289, 373–404.

Gear, J. A. & Grimshaw, R. 1984 Weak and strong interactions between internal solitary waves.
Stud. Appl. Maths 70, 235–258.



286 D. A. Horn, J. Imberger, G. N. Ivey and L. G. Redekopp

Hammack, J. L. & Segur, H. 1974 The Korteweg–de Vries equation and water waves. Part 2.
Comparison with experiments. J. Fluid Mech. 65, 289–314.

Hammack, J. L. & Segur, H. 1978 The Korteweg–de Vries equation and water waves. Part 3.
Oscillatory waves. J. Fluid Mech. 84, 337–358.

Heaps, N. S. & Ramsbottom, A. E. 1966 Wind effects on the water in a narrow two-layered lake.
Phil. Trans. R. Soc. Lond. A 259, 391–430.

Helfrich, K. R. 1992 Internal solitary wave breaking and run-up on a uniform slope. J. Fluid
Mech. 243, 133–154.

Helfrich, K. R. & Melville, W. K. 1986 On long nonlinear waves over slope-shelf topography.
J. Fluid Mech. 167, 285–308.

Helfrich, K. R., Melville, W. K. & Miles, J. W. 1984 On interfacial solitary waves over slowly
varying topography. J. Fluid Mech. 149, 305–317.

Horn, D. A., Imberger, J. & Ivey, G. N. 2001 The degeneration of large-scale interfacial gravity
waves in lakes. J. Fluid Mech. 434, 181–207.

Horn, D. A., Redekopp, L. G., Imberger, J. & Ivey, G. N. 2000 Internal wave evolution in a
space-time varying field. J. Field Mech. 424, 279–301.

Hunkins, K. & Fliegel, M. 1973 Internal undular surges in Seneca Lake: a natural occurrence of
solitons. J. Geophys. Res. 78, 539–548.
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